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The interaction between mathematics and physics was the
topic of a conference held at the Saxon Academy of Science in
Leipzig in March 2010. The fourteen talks of the conference
have been adapted for this book and give a colourful picture
of various aspects of the complex and multifaceted relations.

The articles mainly concentrate on the development of this
interrelation in the period from the beginning of the 19th
century until the end of WW II, and deal in particular with
the fundamental changes that are connected with such
processes as the emergence of quantum theory, general
relativity theory, functional analysis or the application of
probabilistic methods. Some philosophical and epistemo-
logical questions are also touched upon. The abundance of
forms of the interaction between mathematics and physics
is considered from different perspectives: local develop-
ments at some universities, the role of individuals and/or
research groups, and the processes of theory building.

The conference reader is in line with the bilingual character
of the conference, with the introduction and nine articles
presented in English, and five in German.
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Studien zur Entwicklung von Mathematik und
Physik in ihren Wechselwirkungen

Die Entwicklung von Mathematik und Physik ist durch zahlreiche
Verknüpfungen und wechselseitige Beeinflussungen gekennzeichnet.
Die in dieser Reihe zusammengefassten Einzelbände behandeln vorran-
gig Probleme, die sich aus diesen Wechselwirkungen ergeben.
Dabei kann es sich sowohl um historische Darstellungen als auch um die
Analyse aktueller Wissenschaftsprozesse handeln; die Untersuchungsge-
genstände beziehen sich dabei auf die ganze Disziplin oder auf spezielle
Teilgebiete daraus.
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Vorwort

In vielen Bereichen der Naturwissenschaften wird von mathematischer
Durchdringung gesprochen, doch gibt es wohl kaum Gebiete, in denen
die wechselseitige Beeinflussung stärker ist als zwischen Mathematik
und Physik. Ihr Wechselverhältnis war wiederholt Gegenstand erkennt-
nistheoretischer und historischer Untersuchungen. Eine wichtige, nur
selten im Zentrum der Betrachtungen stehende Frage ist dabei die nach
der konkreten Ausgestaltung dieser Wechselbeziehungen, etwa an einer
Universität, oder die nach prägenden Merkmalen in der Entwicklung
dieser Beziehungen in einem historischen Zeitabschnitt.

Diesem Problemkreis widmete sich ein Projekt der Sächsischen Akade-
mie der Wissenschaften zu Leipzig, das die Untersuchung der Wechsel-
beziehungen zwischen Mathematik und Physik an den mitteldeutschen
Universitäten Leipzig, Halle-Wittenberg und Jena in der Zeit vom frühen
19. Jahrhundert bis zum Ende des Zweiten Weltkriegs zum Gegenstand
hatte. Das Anliegen dieses Projektes war es, diese Wechselbeziehungen
in ihren lokalen Realisierungen an den drei genannten Universitäten
zu untersuchen und Schlussfolgerungen hinsichtlich der Entwicklung
und Charakterisierung der Wechselbeziehungen abzuleiten. Die in dem
Projekt vorgelegten Ergebnisse dokumentieren die große Variabilität in
der Ausgestaltung dieser Wechselbeziehungen, die Vielzahl der dabei
eine Rolle spielenden Einflussfaktoren sowie deren unterschiedliche
Wirkung in Abhängigkeit von der jeweiligen historischen Situation.

Auf der internationalen wissenschaftshistorischen Fachtagung «Ma-
thematics meets physics – General and local aspects», die vom 22. – 25.
März 2010 in Leipzig stattfand, wurden die Ergebnisse dieser lokalen
Detailstudien in einen breiteren Kontext eingebettet und mit einem Fach-
publikum diskutiert. International anerkannte Wissenschaftshistoriker
und Fachwissenschaftler präsentierten ihre Untersuchungsergebnisse zu
den Wechselbeziehungen zwischen Mathematik und Physik, wobei sie
in ihrer Schwerpunktsetzung die Rolle innerdisziplinärer Entwicklun-
gen, einzelner Wissenschaftlerpersönlichkeiten bzw. wissenschaftlicher
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Schulen oder institutioneller Veränderungen in den Mittelpunkt ihrer
Analysen rückten und somit die in dem Akademieprojekt gewonnenen
Erkenntnisse in vielerlei Hinsicht ergänzten. Außerdem versuchten
einzelne Referenten von einem allgemeineren, philosophischen Stand-
punkt aus, das Wesen und die Entwicklungslinien der Wechselbezie-
hungen zwischen Mathematik und Physik durch einige Merkmale zu
charakterisieren. Im Ergebnis lieferte die Konferenz einen guten Einblick
einerseits in die aktuellen Forschungen zu den Beziehungen zwischen
Mathematik und Physik mit all ihrer Diversität und andererseits in die
auch in der abschließenden Podiumsdiskussion formulierte, wohl etwas
überraschende Einsicht, dass die in früheren Darstellungen skizzierte
kontinuierliche Entwicklung der Wechselbeziehungen einer deutlichen
Revision und Spezifizierung bedarf.

Mit diesem Tagungsband werden die vorgetragenen Ergebnisse nun
einer breiten wissenschaftlichen Öffentlichkeit vorgelegt. Dabei will der
Band nicht nur Einblicke in die gegenwärtige Forschung gewähren,
sondern zugleich neue Untersuchungen anregen. Er enthält 14 der
insgesamt 18 präsentierten Vorträge in einer überarbeiteten Fassung. Vier
der Tagungsteilnehmer haben aus unterschiedlichen Gründen ihr Referat
leider nicht zur Publikation eingereicht. In einigen Fällen werden sie
ihre Ergebnisse in ein größeres eigenes Werk einfließen lassen. Um dem
Leser einen vollständigen Überblick über die vorgetragenen Themen zu
geben, ist am Ende des Buches das Tagungsprogramm angefügt.

Die Konferenzsprachen waren Deutsch und Englisch. Wir haben als
Herausgeber diesen zweisprachigen Charakter der Tagung bewusst
für diesen Band übernommen und es den Autoren überlassen, die
Ausarbeitung ihres Vortrags in Deutsch oder in Englisch zu präsentieren.
In den meisten Fällen gab es sowohl gute Gründe für die Wahl der
deutschen Sprache, als auch für die Wahl des Englischen.

In die Gestaltung der Artikel haben wir nur sehr vorsichtig und
nur formale, keine inhaltlichen Aspekte betreffend eingegriffen. Ne-
ben der Anpassung an ein einheitliches Layout wurde jedem Artikel
eine inhaltliche Übersicht vorangestellt, die wir aus der vom Autor
vorgenommenen Gliederung seines Beitrags erzeugten. Aufgrund der
individuellen Gewohnheiten ergaben sich dabei deutliche Unterschiede
zwischen den einzelnen Artikeln, die wir als persönliche Note des Autors
interpretiert haben und nicht versuchten zu beseitigen. Die Angaben zur
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verwendeten Literatur und die Zitierweise wurde von uns ebenfalls nicht
vereinheitlicht. Dennoch folgen sie im Wesentlichen einem einheitlichen
Schema, indem die Verweise in den Fußnoten bei der Literatur durch
Angabe des Autors und des Erscheinungsjahres bzw. bei Archivalien
entsprechend der offiziellen Abkürzungen der Archive vorgenommen
werden. Sind von einem Wissenschaftler mehrere Arbeiten aus einem
Jahr aufgeführt worden, so wird an die Jahreszahl der Buchstabe a, b
oder c entsprechend der Auflistung im Literaturverzeichnis angefügt.
Die Auflösung der Kürzel wird im Literaturverzeichnis vorgenommen,
das am Ende des jeweiligen Artikels steht. Während das Literatur- und
Quellenverzeichnis bei dem jeweiligen Artikel belassen wurde, sind
die Personennamen in einem gemeinsamen Personenverzeichnis am
Ende des Buches zusammengestellt. Soweit bekannt bzw. ermittelbar
wurden die Lebensdaten der Personen angefügt. Schließlich haben wir
die Reihenfolge der Artikel aus inhaltlichen Gründen gegenüber der
Vortragsfolge im Programm leicht abgeändert.

Die Durchführung der Tagung in dem geplanten Umfang wurde erst
durch die finanzielle Unterstützung seitens der Deutschen Forschungs-
gemeinschaft möglich. Für diese Hilfe danken wir sehr herzlich. Ebenso
danken wir der International Commission on the History of Mathematics,
die die Tagung als förderungswürdig anerkannte und ihr eine größere,
internationale Aufmerksamkeit verschaffte. Bei der Vorbereitung der
Tagung stand uns die Kommission für Wissenschaftsgeschichte der
Sächsischen Akademie der Wissenschaften zu Leipzig, insbesondere
ihr Vorsitzender Herr Professor M. Folkerts, mit Rat und Tat zur Seite,
wofür wir uns herzlich bedanken. Doch was wäre eine Tagung ohne die
fleißigen Helfer im Hintergrund. Ein besonderer Dank gilt diesbezüglich
mehreren Mitarbeitern in der Verwaltung der Akademie, von denen
stellvertretend Frau E. Kotthoff und Herr A. Dill besonders genannt
seien.

Bei der Drucklegung des Buches konnten wir wie gewohnt auf die gute
Zusammenarbeit mit dem Verlag, speziell Herrn K. Horn, und dessen
Kooperationspartner Herrn Dr. S. Naake bauen. Trotz des gegenüber
vorangegangenen Publikationen deutlich größeren Aufwandes hat
Herr Dr. Naake uns bei der Gestaltung des Buches sehr kompetent
beraten sowie unsere Vorstellungen mit viel Geduld und großer Sorgfalt
umgesetzt, beiden einen herzlichen Dank. Weiterhin möchten wir Frau
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Dr. H. Kühn für ihre tatkräftige Unterstützung und die zahlreichen
Hinweise bei der Vorbereitung des Buchmanuskripts und während der
Fahnenkorrektur danken.

Die Tagung ist ein wichtiges Element des eingangs genannten For-
schungsprojektes der Sächsischen Akademie im Rahmen des Akade-
mievorhabens: «Geschichte der Naturwissenschaften und der Mathe-
matik». Dem Bundesministerium für Bildung und Forschung sowie
dem Sächsischen Staatsministerium für Wissenschaft und Kunst danken
wir für die finanzielle Absicherung dieses Akademieunternehmens und
somit auch des Druckes dieses Tagungsbandes. Der Band bildet die
Abschlussveröffentlichung des Projektes und ist zugleich die letzte
Publikation in dem in einem Monat auslaufenden Akademievorhaben.

Mainz/Leipzig, November 2010

Martina Schneider
Karl-Heinz Schlote
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Einstein’s General Theory of Relativity has often been taken as the
quintessential modern example of what can happen when a mathemati-
cal field comes into contact with a physical discipline. Indeed the story
of the meeting between differential geometry and general relativity is
often summed up in the literature by the expression “the geometrization
of physics”.

We shall be telling a different story here, one in which a group of
mathematicians, in alliance with some physicists, consciously organized
themselves into a school, organized on a large scale with a definite
program. Their aim: to produce a new joint mathematics and physics
project which would empower a great scientific advance in the domain
of mathematics/theoretical physics, in turn raising the United States in
general – and Princeton University in particular – to the position of a
world-class scientific power. The primary creator and principal theorist
of this project was Oswald Veblen and we shall be following the story
from his point of view, as well that of his colleague and co-organizer
Luther Pfahler Eisenhart. Having introduced the actors we now turn to
the scenography.

The physical theory which the Princeton School saw as the target
of their own mathematical work was that of general relativity and its
extensions. What should be understood here by “general relativity” is
that viewpoint, shared by many physicists in the nineteen-twenties, that
general relativity, as a theory of gravitation, was just one step along the
road that would lead to an ultimate theory of all physical interactions.
As Einstein himself expressed it in 1925:

“The conviction of the essential unity of the gravitational and
the electromagnetic fields is firmly established today among the
theoretical physicists working in the field of general relativity
theory.”1

To some, like Einstein, the constituent theories to be combined were
limited to general-relativistic gravitation and Maxwellian electrodynam-

1 «Die Überzeugung von der Wesenseinheit des Gravitationsfeldes und des elektro-
magnetischen Feldes dürfte heute bei den theoretischen Physikern, die auf dem
Gebiete der allgemeinen Relativitätstheorie arbeiten, feststehen.» (Einstein 1925, 414)
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ics. For others, however, a third domain, that of the atomic structure of
matter, had to be integrated on an equal footing.2

But one need not take Einstein’s word for the interest in unification.
An examination of the published literature for this decade yields a
confirmation of this attitude.

Comparing the number of articles published in the field of relativity
and in that of unified theories (defined as those attempting a union of
at least two of the fields of gravitation, electromagnetism and theories
of matter) in the years 1920, 1925 and 1930 yields the result shown in
Figure 1.

Figure 1
Number of publications in
relativity (special + general) and
unified theories 1920 – 1925 – 1930
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The total number of articles show only a slight secular decrease over
the decade but unified theories take a progressively larger proportion of
this total, fueled at first by a decrease in the number of pure relativity
articles and then, additionally, in 1930, by a major absolute increase
in the number of unified-theoretical publications. A closer analysis of
the contents of the articles and their authors show that the initial high
level of interest in general relativity undergoes an important transfer

2 Einstein’s well-known objection to quantum theory was not based on a refusal of
its results but arose from a conviction that quantum theory – old or new – should
arise as a consequence of a correct unification of gravitational and electromagnetic
interactions. This and the discussion which follows here are drawn from Goldstein
& Ritter 2003.
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to the new quantum theory of 1925/26, not immediately, but a bit later,
following the publication of Dirac’s electron theory (Dirac 1928). It was
this latter which was seen at the time as offering a new alternative route
to the unification of gravitation, electromagnetism and matter theory
and, as such, inspired the surge in unified-theory publications at the end
of the decade.

This then is the backdrop to a story which involves a group of bright
and ambitious young American mathematicians in a small teaching
university just after the First World War, with expertise in axiomatic
and differential geometry facing new and exciting developments in the
field of theoretical physics which seem to have a special relationship
with their own or related fields. Within less than a decade Princeton
University will be one of the foremost mathematical research institutions
in America and the disciplinary program put in place will attract not
only some of the brightest American mathematicians but quite a number
of prestigious European scientists as well.

1 Oswald Veblen

When Oswald Veblen left the University of Chicago in 1905, two years
after obtaining his doctorate, to take up his position at Princeton
University as one of University president Woodrow Wilson’s new
“preceptors”, he was already recognized as one of America’s brightest
young geometers. In particular, he had become, with Edward Vermilye
Huntington at Harvard, the leading exponent of “American postulate
theory”,3 an approach initiated by his Chicago thesis advisor, Eliakim
Hastings Moore.

In the wake of the interest generated by the publication of David
Hilbert’s Grundlagen der Geometrie in 1899, Moore had organized a
seminar at the University of Chicago on the foundations of geometry and
analysis during the Fall quarter of 1901, with Veblen its most enthusiastic
participant. (Parshall & Rowe 1994, 383 – 384). It was his experience
in this seminar which set Veblen’s interest and directly inspired his

3 The term is due to Corcoran 1980. No particular name was used by the protago-
nists, who saw themselves simply as participants in the general and international
discussion of the logical foundations of mathematics.
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doctoral thesis on an alternate rigorous axiomatization of Euclidean
geometry, based on “point” and “order” rather than Hilbert’s “point”,
“line”, “plane” and “between” as its founding undefined terms. But the
most significant advance in this formulation was its emphasis on the
question of the unique specification by the axioms of their object of study.
As Veblen expressed it in the published version of his thesis:

“Inasmuch as the terms point and order are undefined one has
a right, in thinking of the propositions, to apply the terms in
connection with any class of objects of which the axioms are valid
propositions. It is part of our purpose however to show that
there is essentially only one class of which the twelve axioms are
valid. (. . . ) Consequently any proposition which can be made
in terms of points and order either is in contradiction with our
axioms or is equally true of all classes that verify our axioms.
The validity of any possible statement in these terms is therefore
completely determined by the axioms; and so any further axiom
would have to be considered redundant. Thus, if our axioms are
valid geometrical propositions, they are sufficient for the complete
determination of euclidean geometry.”4

This question of “complete determination” – or categoricity,5 the term in-
troduced in this publication, borrowed by Veblen from fellow Chicagoan
John Dewey6 – was at first aimed at establishing a criterion for the
determination of the possible redundancy of a set of axioms which,
following the Italian school (Peano, Padoa), constituted the main thrust
of Moore’s own interest.7

But Veblen was quick to see a deeper significance to this question.
For him and the other postulationists the real interest lay in the degree
of precision and uniqueness which a set of axioms could achieve in
designating the object(s) which they were created to formalize. By
building up blocks of axioms, one could progressively sharpen the focus

4 Veblen 1904, 346
5 Actually, the current term “categoricity” is of recent vintage. Veblen either uses the

adjectival form “categorical” or, later and more rarely, the substantive “categorical-
ness”, e. g., Veblen 1911, 49.

6 Veblen 1904, 346, note ‘‡’; see the discussion in Grattan-Guinness 2000, 211.
7 See for example Moore’s own publication arising from this seminar, (Moore 1902),

and the first part of his Presidential farewell address to the American Mathematical
Society in December 1902, (Moore 1903).
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and eliminate unwanted objects from the class of those defined by the
axioms up to that point. As Veblen expressed it some twenty years later
with reference to “elementary geometry,” i. e., that class of theorems
extending from topology through projective and affine to Euclidean
geometry:

“Each one of these groups of theorems is logically distinguished
from its predecessor by the appearance of new relations which are
brought in either by means of new axioms and undefined terms or
by means of definitions which limit attention to a restricted class
among the totality of possible geometric objects. At each stage
the freedom of physical interpretation is restricted until, at the
final step, it is necessary to specify the physical significance of a
measuring stick and of a rectangular cartesian coordinate system.”8

Veblen’s further pre-War work on the axiomatic foundations of projective
geometry and of topology (Veblen always preferred the older term
“analysis situs”) will not detain us here.9

For the rest of Veblen’s story there are two significant influences at
work in the period leading up to the 1920s: Veblen’s research experience
during the First World War at the Aberdeen Proving Ground, and his
contact and collaboration with his fellow Princeton preceptor, then
professor, the differential geometer Luther Pfahler Eisenhart.

The combination of the two led to Veblen’s “differential-geometric
turn” and his post-War program, jointly with Eisenhart, to apply the
postulationist approach to that new field straddling differential geometry
and physics that was general relativity. In fact, the program was more
ambitious still: to refound both geometry and physics in a new synthesis
that would replace the old – Euclidean geometry and Newtonian me-
chanics – in a way that would include, and transcend, all contemporary
work in topology, projective, affine and Riemannian geometry, general
relativity, and the new unified field theories of Hermann Weyl and
Arthur S. Eddington.

8 Veblen 1923, 131 – 132
9 For information on Veblen’s work in these areas, as well as his later influence on

Princeton logicians, see Aspray 1991.
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2 The lessons of war

In a synthesis of the role of physics in American scientific war work,
given at the end of 1919 by the physicist Gordon Hull before the
American Association for the Advancement of Science, Veblen was
singled out for particular praise:

“A number of experiments [in ballistics] were carried on at Ab-
erdeen [Proving Ground], chiefly by Major Veblen and Lieutenant
Alger . . . It is seen that these experiments added greatly to the
effectiveness and therefore to the value of the guns in question.
The work belongs to physics, notwithstanding the fact that one
of these civilian officers was and is a professor of mathematics of
the purest quality. That he was able to bring himself temporarily
to neglect the fundamental concepts of geometry, in which realm
he is one of our foremost thinkers, to enter into the problems of
the war with an eagerness for close observation of actualities and
a readiness to try out new methods, is very greatly to his credit.
He is evidently a physicist by intuition and a mathematician by
profession.”10

From this war experience and his recognized success in organizing
both the personnel and the scientific-technical ballistics program of the
brand-new Aberdeen Proving Ground, Veblen came away with two
major ideas: 1° that a new style of organization, centering on large
groups, working collectively on a common research program, would be
necessary for America to gain world status in science and 2° that the
subject of such a scientific project – for America at least – would lay in
the close integration of mathematics with physics to tackle the principal
question of contemporary science.11

2.1 The Princeton School

Yet another aspect of Veblen’s war work to be integrated into the project
concerned the organizational aspects of the geometry/physics program.
The War – and Veblen’s own experience in setting up a fruitful and
practical ballistics group in a new testing facility – convinced him that the
old ways of individual researchers were now outmoded; real advances

10 Hull 1919, 228 – 229
11 For details on Veblen’s war experiences, see Grier 2001.
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were to be expected only through teamwork and the full mobilization
of talents. To this end the Princeton Mathematics Department, faculty
and doctoral students alike, became part of one of the first experiments
in organized research in the US academic world. Concentration on
the complementation of individual research projects, a structured and
focused curriculum, and money and space for creating an efficient
infrastructure were all ingredients.

As to the subject of such a collective project, the enormous success
of Einstein’s new theory of relativity following the eclipse results
announced in November 1919 gave an obvious indication of where
a focus might be found to really advance the position and role of
American mathematics in the new post-war world. Moreover, there
would be little competition from Europe in the field of fundamental
applied mathematics. As he expressed it a few years later in seeking
to organize an independent research center based at Princeton: “This
programme [at Princeton] embraces studies in the geometry of paths and
analysis situs which are becoming more and more clearly the foundations
of [general relativistic] dynamics and the quantum theory.”12

The difficulty was that Veblen himself had little experience with
either the new physics or the particular mathematical tools – differential
geometry and tensor analysis on manifolds – that were used by general
relativity and many of the proposed unified theories. Luckily for him
there was in the Mathematics Department someone who did know
these things: Luther Pfahler Eisenhart. It was he who had been invited
to introduce the mathematical aspects of relativity to the American
mathematical community (with Leigh Page of Yale for the physics) at the
special session on relativity at the annual meeting of the American
Mathematical Society at Columbia on 24 April 1920 (published as
Eisenhart 1920a). And it was Eisenhart who defended the new Einstein
theory against critical attack by anti-relativists like Philipp Lenard and
the idiosyncratic American astronomer T. J. J. See (Eisenhart 1923b).13

Finally it was Eisenhart who wrote to Einstein to invite him to Princeton

12 “Institute for Mathematical Research at Princeton”: the manuscript is undated and
unsigned but certainly by Veblen, circa 1925. Cited in Aspray 1988, 352.

13 For the relativity debate in the American astronomical community see Crelinsten
2006.
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to lecture on his new theory.14 The original invitation was an offer
of a semester’s visiting lectureship, which Einstein refused. When he
was later convinced of the interest of a visit to the United States, he
agreed to give the Stafford Little Lectures at Princeton in May 1921.15

These became the classic Einsteinian introduction to general relativity
in the English-speaking world and served as an implicit declaration by
Princeton University of its claim to be the center of relativity research in
America.

Moreover, in the decade following 1923, the doctoral students of
Veblen and Eisenhart (and sometimes of both jointly): Tracy Y. Thomas,
Harry Levy, Morris S. Knebelman, John H. C. Whitehead, all did their
theses in the domain of the geometry of paths.16 Even the logician
Alonzo Church, who had stayed on at Princeton to write a thesis on
mathematical logic under Veblen, was persuaded to publish two articles
as a doctoral student in the geometry of paths program (Church 1924;
Church 1927).

In addition to the more or less permanent members the Princeton
Mathematics Department hosted a number of Visiting Fellows during
this period who worked on the geometry of paths program or closely
related issues, their financing provided by the new National Research
Council fellowship program in mathematics instituted in large part
through Veblen’s urging.17

The recruitment of permanent staff was a particularly important
desideratum for the Department. Tracy Thomas was perhaps the most
enthusiastic younger member of the School; after having obtained his
doctorate with Veblen in 1923, he then spent two years as a National
Research Fellow, the first year at the University of Chicago and the
second with Hermann Weyl at the ETH in Zurich. He returned to
Princeton as a lecturer for the Fall Term of 1926 where he remained

14 Eisenhart to Einstein, 20 October 1920 (Eisenhart 1920b).
15 These five lectures, delivered in German, were published simultaneously in English

translation in the U. S. and Great Britain (Einstein 1922a) and, in the same year, in
German (Einstein 1922b).

16 John L. Vanderslice was a late addition, finishing his thesis under Veblen in 1934,
after the latter had left the University in 1932 to become the first director of the
mathematical section of the Institute for Advanced Study.

17 For Veblen’s role in structuring post-World War I mathematics financing see Feffer
1999.
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until his departure for UCLA in 1938. Howard Robertson, a brilliant
young physicist from Cal Tech, was recruited in 1929 with a joint chair
in Physics and Mathematics. At home in general relativity, quantum
physics and differential geometry, he worked at first with Hermann
Weyl. The latter had arrived as a Visiting Professor in his eyes but a
permanent staff member for the Princeton group and his departure for
Göttingen after only a year was a great disappointment to the Group at
the time, though he was to Princeton (at the newly-founded Institute for
Advanced Study) a few years later.

The course structure, both upper-class undergraduate and graduate,
was revamped to provide more differential geometry and relativity
courses, as well as joint seminars with the Physics Department. This
revamping lasted much longer at Princeton than the many other similar
attempts at other American universities. Indeed to the demographer
George E. Immerwahr, recalling his undergraduate days at Princeton in
1926 – 1930, it seemed that “almost all the upper-class math was related
somehow to relativity, which was a big subject at that time.”18

2.2 The geometry of paths program

If the restructuring of the curriculum was a crucial element in the
program, the choice of a research project was at the heart of the
matter. The basic idea had arisen during Veblen’s and Eisenhart’s
joint mathematical seminar on “The Theory of Relativity” during the
1921 – 1922 academic year.19 It was in this context that a very ambitious
program not only for mathematics but also for the new physics of the
twentieth century was laid out. It was named the geometry of paths
program and, though modified over the coming years, it remained the
hallmark of the greater part of research in mathematics carried out for a
decade at Princeton.

The actual work in the program had begun in 1922 with the publication
of a series of notes in the Proceedings of the National Academy of Sciences
(and not for example, as was standard for mathematicians, in the Bulletin
of the American Mathematical Society), a sign that, as in that year’s Ameri-
can Association for the Advancement of Science address, the Princeton

18 Immerwahr 2003.
19 Princeton University 1922, 260.
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group were appealing to a wider audience, beyond the boundaries
of pure mathematicians. However the narrower mathematical public
was not ignored and in the following years, publications were sent
to the Bulletin and Transactions of the American Mathematical Society
(an organization of which Veblen was President in 1923 – 1924 and
Eisenhart in 1931 – 1932), as well as to the Annals of Mathematics (of
which both Eisenhart and Veblen were editors). These publications
continued without respite during the nineteen-twenties; in the decade
following 1922 and ending with Veblen’s ’departure’ for the Institute
for Advanced Study in 1932 there were some one hundred articles and
books published by the Princeton group relating to the geometry of
paths program.

The mathematical basis of the program was introduced in the group’s
very first publication:

“1. One of the simplest ways of generalizing Euclidean Geometry
is to start by assuming (1) that the space to be considered is an
n-dimensional manifold in the sense of Analysis Situs, and (2) that
in this space there exists a system of curves called paths which, like
the straight lines in a euclidean space, serve as a means of finding
one’s way about.

These paths are defined as the solutions of a system of differential
equations,

d2xi

ds2 + Γi
jk

dxj

ds
dxk

ds
= 0, (1.1)

in which the Γi
jk’s are analytic functions of (x1, x2, . . . , xn) and the

indices i, j, k run from 1 to n. (. . . )

This definition of the paths is immediately suggested by the fact
that the differential equations of the straight lines in a euclidean
space which are

d2xi

ds2 = 0 (1.3)

in cartesian coördinates, take the form (1.1) in general coördinates,
the Γ’s now being such that there shall exist an analytic transfor-
mation of (x1, x2, . . . , xn) converting (1.1) into (1.3).”20

20 Eisenhart & Veblen 1922, 19 – 20
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However paths are not necessarily geodesics since no minimizing or
maximizing criteria are to be demanded of them. They are defined
simply as the solutions to the set of n3 differential equations given by
(1.1).

Now since in general relativity these solutions with Γi
jk the Levi-Civita

connection (Christoffel symbols) are precisely the trajectories of physical
particles, with mass (matter) or without (light), such an approach is not
only a natural way to explore the underlying levels of affine and metric
geometries, but gives an immediate and physically intuitive way into
the higher-level kinematics and dynamics of the new physics.

Elected president of the American Mathematical Society for
1923 – 1924, Veblen devoted his presidential address to the question of
a survey of recent foundational advances in geometry. In the opening
section he raised the question of the relations between physics and
mathematics:

“The foundations of geometry must be studied both as a branch
of physics and as a branch of mathematics. From the point of
view of physics we ask what information is given by experience
and observation as to the nature of space and time. From the
point of view of mathematics, we ask how this information can be
formulated and what logical conclusions can be drawn from it.

It is from the side of physics that has come the most important
contribution in the last two decades.”21

That geometry and physics formed indeed part of the same discipline
had been first put forward in an explicit fashion by Veblen in his
retirement address as Vice-President of the Mathematics Section of the
American Association for the Advancement of Science in the closing
days of 1922:

“[Geometry] consists of a sequence of statements arranged in a
certain logical order but void of all physical meaning. In order to
apply them to nature we identify the undefined terms (points,
lines, etc.) as names of recognizable objects. The unproved
propositions (axioms) are then given a meaning, and we can ask
whether they are true statements. If they are true, then we expect
that the theorems which are their logical consequences are also

21 Veblen 1925, 121
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true and that the abstract geometry will take its place as a useful
branch of physics.”22

Moreover it was at this same Boston AAAS annual meeting that Veblen
first publicly presented the outline of a specific and ambitious program to
carry out for the new relativistic physics what had historically been done
for the old Newtonian theory; discussing in some detail the manner in
which the components of the classical Euclidean geometry–Newtonian
physics complex could be seen as built up in Postulationist style out of
incremental additions of blocks of undefined terms and the axioms and
definitions concerning them. His presentation can be summed up by
a diagram (Figure 2) in which each level is denoted by a circle which
subsumes the axioms of those sub-domains (circles) within it as well as
adding other postulates to capture the introduction of new higher-level
concepts.23

Mechanics

Kinamatics

Euclidean geometry
Affine geometry

Projective geometry

Analysis situs

Figure 2
Veblen’s view of the
build-up of classical
geometry and physics in
terms of englobing axiom
blocks (Based on Veblen
1923)

22 Veblen 1923, 130. One might ask if, in Veblen’s view, geometry is a part of physics
why had it been miscatalogued as mathematics for so long? The answer is that “the
branch of physics which is called Elementary Geometry was long ago delivered into
the hands of mathematicians for the purposes of instruction” (Veblen 1923, 130).

23 This diagram is my own résumé of the discussion in Veblen 1923.
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“Each one of these groups of theorems [defining a sub-discipline]
is logically distinguished from its predecessor by the appearance
of new relations which are brought in either by means of new
axioms and undefined terms or by means of definitions which
limit attention to a restricted class among the totality of possible
geometric objects.”24

The shaded circles represent those areas traditionally called “geometry”.
Further additions of axioms continue the construction into the domain
traditionally called “mechanics” (non-shaded circles) though of course
for Veblen there is no intrinsic difference in the nature of the enterprise.

As for the specific content of these various levels, Veblen goes into
some detail for classical geometry/mechanics. One might summarize
his discussion in the talk of the various sub-domains of this field by the
first two columns of Table 2.

Thus starting from the fundamental level of analysis situs which
associates triples of reals with points of a space, making analytic
geometry possible, consecutively adds axioms concerning “straightness”
(projective geometry), “parallels” (affine geometry) and “distance”
(Euclidean metric geometry). With this last the domain of traditional
domain called geometry is complete:

“At each stage the freedom of physical interpretation is restricted
until, at the final step, it is necessary to specify the physical
significance of a measuring stick and of a rectangular cartesian
coordinate system.”25

Equipped with this measuring stick and cartesian coordinate system,
one can build up the hierarchy of kinematics with the introduction of
the postulates of time and substance (kinematics) and then of mass
(mechanics in general).

The completion of the final stage, to produce specific dynamical
systems is more complex. Newtonian mechanics, beyond the common
“mechanics in general” is divided into a series of segmented higher-level
theories because, while all the low-lying sub-disciplines are categorical
(in the Postulationist sense),

24 Veblen 1923, 131
25 Veblen 1923, 131 – 132
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“the postulates for [classical] mechanics do not form a categorical
set and cannot . . . until the [specific] substance and the forces
are specified. . . . Mechanics is not a mathematical science, but is
the group of theorems common to a collection of sciences. Each
particular problem involves certain axioms in addition to those of
mechanics in general.”26

Table 2
Classical and modern constructions of geometry/physics

Domain of physics Classical physics Modern physics

Analysis situs points ←→ (x, y, z) continuous or
(analytic geometry) discontinuous manifold

Projective geometry theory of straightness properties independent of
infinitesimal parallelism

Affine geometry theory of parallels properties involving
infinitesimal parallelism

Metric geometry Euclidean geometry Riemannian geometry

Kinematics definitions of time special relativity
and substance

Mechanics definitions of mass general relativity and
+ specific axioms for unified theories
each problem

So much for the past. Now “a series of brilliant discoveries in physics
has been making the abstract [Postulationist] point of view a vital
issue in that science also.” (Veblen 1923, 129) Here Veblen has general
relativity and its unified theory extensions in mind; their geometric base
in Riemannian geometry however forces infinitesimal rather than finite
structures in the construction of the geometry/physics discipline. Hence
the necessary shift in the axioms and interpretation of the various levels
of the hierarchy indicated in Table 2. It is this project that Veblen and
Eisenhart had set into motion some eleven months earlier under the
name of “the geometry of paths”:

“The geometry of paths can be considered as a generalization both
of the earliest part of elementary geometry and of some of the most

26 Veblen 1923, 134
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refined of physical theories. The study of the projective, affine and
the metric geometry of paths ought to result in a comprehensive
idea of what types of physical theory it is possible to construct
along the lines which have been successful in the past.”27

Others had, it is true, already begun the study of these geometries:

“This generalized geometry has been studied by H[ermann] Weyl
. . . and . . . by A[rthur] S[tanley] Eddington . . . . Both these authors
define it in terms of a generalization of Levi-Civita’s concept of
infinitesimal parallelism rather than by the more natural idea of a
system of paths.”28

Not only did the Princeton School see their approach as different from
one tied to a specific geometric interpretation of the connection and
its (affine) generalization,29 but they were to differentiate it even more
sharply a bit later from the revived Erlangen Program championed in
France by Élie Cartan, who had just begun to publish on this question in
the same year.

The mention of Hermann Weyl in the filiation paragraph just cited
was certainly the most important one for the Princeton School. They
saw Weyl as the intellectual father of the approach which they were
undertaking, particularly his gauge unified theory of 1919 – 1921; thus
the importance of his acceptance of a position at Princeton University.
I will not have the time here to go into detail concerning Weyl’s
relationship with the Princeton Group.30 For what follows it is necessary
only to point out that a unification of gravitation and electromagnetism
was seen by Weyl to arise from the addition of a scalar field φi to the
gravitational metric tensor gij such that a single variational principle
will yield both the Einstein and the Maxwell equations, with the metric
tensor as the gravitational potential and the “gauge field” φ as the
electromagnetic potential. Both quantities are invariant under change of
coordinates:

27 Veblen 1923, 137
28 Eisenhart & Veblen 1922, 20
29 Aside from this reference to the affine generalization of the connection; the approach

through a generalization of the idea of connection was adopted by the group around
Jan Schouten at Delft.

30 For this the reader is warmly recommended to Scholz 2001 and his chapter in this
book.
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“The linear and quadratic fundamental forms

dφ = φi dxi and ds2 = gikdxidxk

describe the metric of the manifold relative to a reference frame
(=coordinate system + gauge); they are invariant under coordinate
transformations: under a change of gauge the second form gains
a factor α which is a positive continuous function of position
(the ‘gauge factor’), and the first form is diminished by a total
differential d lg α.”31

Given the role played by Weyl in the inception of the path-theoretical
approach it was thus appropriate that it was with his theory that the
Princeton Group made its first intervention in physics.

3 Physics and the Princeton School

3.1 Responding to Weyl

Eisenhart, who had already published a series of articles on the groups
of motion of static solutions of the Einstein field equations (Eisenhart
1921) became after 1922 the group’s spokesperson for the application of
the paths program to relativity theory and its extensions, with Veblen
and other early members of the School, such as Tracy Y. Thomas and
Harry Levy, concentrating at first on the geometric core.32

Though the program had been based from the beginning on paths as
the fundamental object precisely in order to establish a direct connection
between geometric objects and the trajectory of particles in the new
physics, this point was first made explicit in the introduction to the first

31 «Die lineare und die quadratische Fundamentalform

dφ = φi dxi und ds2 = gik dxi dxk

beschreiben die Metrik der Mannigfaltigkeit relativ zu einem Bezugssystem (= Ko-
ordinatensystem + Eichung); sie bleiben bei Koordinatentransformationen invariant,
bei Abänderung der Eichung nimmt die zweite einen Faktor α an, der eine positive
stetige Ortsfunktion ist (das ‹Eichverhältnis›), die erste vermindert sich um das totale
Differential d lg α.» (Weyl 1919, 105)

32 Eisenhart also of course participated in work on the geometric aspects of the theory
and presented the group’s general treatment of the geometry of paths approach in a
series of five public lectures at the 1925 American Mathematical Society Colloquium,
published as Non-Riemannian Geometry (Eisenhart 1927).
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post-1922 Eisenhart physics article, concerning the Weyl unified gauge
theory.

“In the geometry of paths as developed by Professor Veblen and
myself in a number of papers. . . the idea is that the paths are a
generalization of straight lines in euclidean space.. . . Now I make
the assumption that physical phenomena manifest themselves in paths
in a space-time continuum of four dimensions and that the functions Γi

jk
are determined by the character of the phenomena. In this note I apply
this idea to the case of electro-magnetic phenomena as developed
in the general theory of relativity, and the results raise the question
whether Weyl, and later Eddington, are justified in the assumption
that the fundamental vector introduced by Weyl in his gauging
system is the electro-magnetic potential of the field.”33

Now, directly from the condition that the class of paths be invariant (up
to reparameterization) under a transformation of coordinates, Eisenhart
obtains the class of physically equivalent paths (Γs); they are of the form:

Γ
i
αβ =

{
i

αβ

}
+ δi

αφβ + δi
βφα − gαβφi

with { i
αβ} the Levi-Civita connection and φ an arbitrary vector. But this,

with φ interpreted as the electromagnetic potential, is just the Weyl affine
connection. This result had already been mentioned in passing in the
1922 articles on the geometry of paths program, e. g., (Eisenhart & Veblen
1922, 23). In spite of its casual treatment in these early notes, it seems
clear that this result was central in the motivation of the Princeton group
to pursue the geometry of paths approach.

Turning to Weyl’s theory Eisenhart shows how the φ actually used is
really

φi = − 1
µ

φi
ν∇ρφνρ

where φµν is the electromagnetic tensor (the ‘curl’ of the potential) and µ

is the mass density of matter. Note that φi here is not the electromagnetic
vector potential but a vector dependent on the electromagnetic and
gravitational field (through the covariant derivative ∇ and the metric
tensor used to raise and lower indices).

33 Eisenhart 1923a, 175; emphasis in the original
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Now enters the geometry of paths. Eisenhart had already established,
as we saw earlier, that physically equivalent paths are only defined up to
an arbitrary vector field. Choosing this φ for such a field defines then an
affine connection, precisely that chosen by Weyl. But, Eisenhart points
out, the φ here employed is not the vector potential as was assumed by
Weyl. Furthermore, argues Eisenhart, if the conformal weight of the
ordinary vector potential is normalized to +1, then φ’s conformal weight
is −1, underlying the difference between them. Weyl and Eddington are
wrong, concludes Eisenhart, in assuming that the gauge vector is the
electromagnetic potential; it is φ that plays this role.

Thus the Weyl theory as it stands is apparently not a unified theory of
the gravitational and electromagnetic field but needs to be modified if
the electromagnetic potential is to figure directly as a variable.

Eisenhart ends his paper with a mention of applications of the program
to Einstein’s field equations as well as those introduced by the latter in
1919 as his first proposal for a unified field theory34:

“Mr. A. Bramley of the Department of Physics of Princeton Uni-
versity has shown, in a paper to be offered to the Philosophical
Magazine, that [the Einstein 1915 and the Einstein 1919] equations
. . . are consistent, if the weight of [the electromagnetic potential]
is taken to be one, and if [this potential] is not supposed to be the
fundamental vector φα of the gauging system, but functionally
related to it in such a way that φα is of weight zero.”35

3.2 Widening the circle
The article referred to by Eisenhart was published under the rather
unexpected title “Electronic conduction in metals” (Bramley 1923) by a
young doctoral student at Princeton, Arthur Bramley. It was in fact a
follow-up to a note proposing a derivation of value of the Planck constant
h from the Maxwell equations and a model of electron radiation that had
been published in a preceding Philosophical Magazine article (Bramley
1922) when Bramley was still an undergraduate at the University of
Oregon. Coming to Princeton in 1923 to do experimental physics and
write a thesis on the refractive index of helium, he discovered exciting
new mathematical tools, probably first through Edwin P. Adams of the

34 Einstein 1919. We shall return to this theory in a later section.
35 Eisenhart 1923a, 178

http://www.harri-deutsch.de/1844.htm


Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics – (978-3-8171-1844-1)

RITTER: Geometry as Physics: Oswald Veblen and the Princeton School 165

Physics Department, the author of the first standard American textbook
on (the old) quantum theory and the translator of Einstein’s Princeton
Lectures. The new article, written at Princeton, deals with an extension
of his original model, now using new geometrical ideas explicitly drawn
from the geometry of paths to explain J. J. Thomson’s then popular
“doublet theory” of metallic conduction.

Arthur Bramley was the first instance of the Princeton group’s attempt
to widen the disciplinary attraction of their program. After a purely
mathematical collaboration with Eisenhart’s doctoral student Harry
Levy (Levy & Bramley 1923 – 24), published in the Annals of Mathematics,
Bramley concentrated on the application of geometrical methods –
specifically the geometry of paths – to problems arising in atomic physics,
publishing in both mathematics and physics journals. He served as the
group’s principle source of information on developments in quantum
theory until he left to become the first Bartol Fellow at the new Bartol
Research Foundation in 1925.

This first collaboration with the Physics Department was to be
followed by others, most notably with Harry Robertson at the end
of the decade. Furthermore Veblen insisted on close physical proximity
between the two Departments. Veblen’s original office was inside the
Physics Department’s Palmer Physical Laboratory and when he has
the occasion to help design the first Mathematics Department building
in 1929, he added a hallway to connect the new Fine Hall and Palmer
Laboratory.36

3.3 Responding to Einstein

Einstein had spent the early nineteen-twenties in modifying the unified
theories of others but in 1925 he had his own non-symmetric affine
theory to propose.37 Starting from an asymmetric affine connection (from

36 Until the completion of Fine Hall in 1931, the Princeton Mathematics Department
possessed no specific building. The few mathematicians with office space were
scattered about the campus, Veblen in Palmer and Eisenhart and Department
chairman Henry Fine in the main administration building, Nassau Hall (Aspray
1988).

37 A discussion of Einstein’s various unified-theory proposals, along with French
translations of some of the articles, is to be found in Ritter 1993. See also Goenner
2004.
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which he constructs an asymmetric Ricci tensor Rab) and an independent
asymmetric tensor density Gab, Einstein varies the Lagrangian

δ
∫
GabRabdx = 0

independently with respect to the two quantities G and Γa
bc, which yields

the following field equations:

Rab = 0

∂Gab

∂xc −
∂Gba

∂xc = 0

−∂gab

∂xc + grbΓr
ac + garΓr

cb + gabφc + gacφb = 0

with φa an arbitrary covariant vector that Einstein will want to interpret
as a electromagnetic potential. The first set of field equations arising
from variation of the Gab represent the generalization of general relativity
while the last two, coming from variation of the Γa

bc, are the equivalents
of Maxwell’s equations in this context.

Three years after the critique of Weyl’s unification scheme Eisenhart
felt ready to tackle this new Einstein theory (Eisenhart 1926). In the
introduction to the article he states his aim:

“In proposing his recent theory of gravitation and electricity Ein-
stein has derived his equations by expressing that a certain integral
is stationary for the variations of a . . . tensor density of the second
order and the coefficient of an asymmetrical connection. In this
note we show more particularly what kind of a linear connection
Einstein has employed and obtain in tensor form the equations
which in this theory should replace Maxwell’s equations.”38

As in his response to Weyl, Eisenhart points out in his final section that
the identification of the arbitrary φa as the electromagnetic 4-potential is
not as straightforward as the author thinks. Taking the linear approx-
imation of the last set of the new Einstein field equations, he shows
that they do not reduce to the linearized version of the corresponding
Maxwell equations and that φa is not simply the expected potential.

38 Eisenhart 1926, 125
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But now, even though Bramley was gone, Eisenhart was no longer
alone among the Princeton School members to venture onto the terrain
of contemporary physics. Joseph M. Thomas, a National Research
Fellow for 1925 – 1926 recruited from the University of Pennsylvania,
participated too in the Princeton School’s response to the new unified
theory. In a paper published in the same number of the Proceedings of
the National Academy of Science as Eisenhart’s, he proposed an alternate
derivation of Einstein’s field equations via a certain generalization of
the ordinary general relativistic equations:

“Recently Einstein has deduced a unified theory of electric and
gravitational fields. . . . I show in the present paper that his
equations can be obtained by direct generalization of the [empty
space GR] equations. The process of generalization consists in
abandoning assumptions of symmetry and in adopting a definition
of covariant differentiation which is not the usual one, but which
reduces to the usual one in case the connection is symmetric.”39

Thus far, the attitude is not far from that of Eisenhart. The role of the
mathematician is to make rigorous the mathematics used in an intuitive
fashion by the physicist, pointing out how other options are available
for the latter to do or to do more clearly what he has already done. But
unlike Eisenhart, J. M. Thomas was prepared to go further. The method
of generalization he develops in the article can be used not only to redo
the Einstein route but can reproduce other physicists’ work. Thomas
devotes the last section of his paper to

“show that the adoption of the ordinary definition of covariant
differentiation leads to a geometry which is a special case of Weyl
as a basis for the electric theory; further, that the asymmetric
connection for this special case is of the type adopted by Schouten
for the geometry at the basis of his electric theory.”40

The references to Weyl and Schouten refer to the Weylian gauge theory
discussed above and Jan Schouten’s 1923 unified theory (Schouten 1923)
as a generalization of Weyl’s. The grounds of the intervention of J. M.
Thomas in the debate among physicists is thus different than the more
traditional attitude represented by Eisenhart. A mathematician can

39 J. M. Thomas 1926, 187
40 J. M. Thomas 1926, 187
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not only improve the understanding of a particular theory, he can use
sophisticated methods to restructure the domain by relating apparently
disparate theories to each other.

This work sprang out of the Princeton Group’s turn to the projective-
geometric part of their project and, in this context, to a more analytic
approach, centering on differential invariants as the privileged point of
departure for further research.41 When, the year before, Eisenhart had
given one of the two annual American Mathematical Society Colloquium
lecture series on the subject of “The New Differential Geometry”, which
summed up the position of the program as of that date, no particular
mention of projective spaces had been made. When he published the
lectures in 1927 under the title Non-Riemannian Geometry (Eisenhart 1927),
he was obliged to add a whole section, over one-quarter of the book, to
cover this subject.

3.4 Differential invariants

When Veblen was invited to give one of the plenary lectures at the
September 1928 International Congress of Mathematicians in Bologna,
Italy, he chose as the subject to introduce the Princeton Group project:
“Differential Invariants and Geometry.” In a very real sense this lecture
was a response to one given at the previous Congress in Toronto four
years earlier by Élie Cartan on “La théorie des groupes et les recherches
récentes de géométrie différentielle” in which the French mathematician
had expounded his program to refound differential geometry on the
basis of a revitalized Erlangen Program, one based on Lie groups rather
than the classical groups that Klein had originally proposed as the basis
for geometry. At the end of his talk he had mentioned in passing the
Princeton program.42 Veblen now took this opportunity to reply to
Cartan:

“The Klein theory of geometry seems to be showing the same
symptoms as a physical theory whose heyday is past. More and
more complicated devices have to be introduced in order to fit it

41 The differential-invariant approach had been summed up by Veblen two years earlier
in his Cambridge Tract volume Invariants of Quadratic Differential Forms (Veblen 1927).

42 Cartan 1928. For a detailed analysis of the Princeton and Paris programs see Ritter
2011.
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to the facts of nature. Its fate I should expect will be the same as
that of a physical theory – it becomes classical and its limitations
as well as its merits are recognized. (. . . ) We are on the way to
recognize that the space may be characterized in many other ways
than by means of a group. For example, there is the fundamental
class of spaces of paths . . . which are characterized by the presence
of a system of curves such that each pair of points is joined by one
and only one curve of the system. . .

If we give up the idea of making one concept – such as the group
concept – dominant in geometry, we naturally return to something
like the starting point of Riemann’s discussion. . . . We prescribe
only the continuous nature of the manifold to be considered and
the analytic character of the operations. There has indeed been an
uninterrupted development of the Riemannian geometries along
these. . . unprejudiced lines. I mean Lipschitz, Christoffel, Ricci and,
more recently, the mathematical physicists. This work seemed
to most mathematicians to be extremely formal and narrow in
outlook. But it was continually developing the ideas of differential
invariant theory. . . . The theory of one or more such invariants is
what we call a geometry.”43

Veblen had chosen to take a sabbatical first semester that year, not only
to attend the Congress but also, invited by his friend G. H. Hardy, to
teach a term at Oxford. In an invited lecture delivered to the London
Mathematical Society on 14 February 1929, Veblen outlined once again
the recast program for the path-geometrical project:

“In recent years geometry has passed definitely beyond the bound-
aries set for it by the Erlanger Programm. According to the Erlanger
Programm a geometry is the invariant theory of a group. According
to the new conception a geometry is the theory of an invariant.
This invariant may or may not have a non-identical group of
automorphisms. If it has such a group, the geometry will be
one of the classical type characterized by Klein. If not, it is of a
generalized type. Thus the group of a space is regarded as one of
its important properties, but not as its all-sufficient characteristic
one.

I do not propose to discuss this question in general terms . . .
Instead, I shall attempt an introductory account of a particular

43 Veblen 1929a, 182 – 183
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class of geometries which arise by generalization from the classical
projective geometry. The first mathematician to recognize the
possibility of a generalized projective geometry was, I think, Weyl,
who showed in 1921 how it is possible to vary an affine connection
in such a way as to keep projective properties unaltered, and
to obtain a tensor, analogous to the curvature tensor, which is
unaltered by these changes.

This discovery was soon followed by studies of infinitesimal pro-
jective displacements – analogous to the infinitesimal parallelism
of Levi-Civita – by Schouten and Cartan, from which there emerges
a theory of what we may call (after Cartan) the non-holonomic
projective spaces.

At the same time some of my colleagues, especially Eisenhart
and T. Y. Thomas and J. M. Thomas, in looking for the theorems
of a geometry of paths which would be independent of any
particular representation of the system of paths by means of an
affine connection, were finding further projective invariants and
getting at their geometric significance.

Also the mathematical physicists, particularly O. Klein, were
developing the so-called five-dimensional relativity which was
first put forward in 1921 by Kaluza as a method of giving a unified
theory of gravitation and electromagnetism.

What they were doing is, however, as I hope to show elsewhere,
better understood as a projective theory in which the supposed
five-dimensional feature is a device covering the use of homoge-
neous coordinates in a space of four dimensions.”44

Armed with these new tools and with, as we shall see, a new recruit
to the Group, Veblen was ready to carry the fight onto the physicists’
own ground. Veblen had moved into the outer, physical circles of his
geometrico-physical concentric rings.

3.5 Talking to physicists

The last two paragraphs of his London talk cited above have no
counterpart in the Congress address of five months previously. They
are the result of Veblen’s contact with one of the students at Oxford
that term, a young physicist named Banesh Hoffmann, who was very

44 Veblen 1929b, 140 – 141
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impressed by both the Princeton project and social and intellectual style
of Veblen (Hoffmann 1984). Once again the American mathematician
had found someone who could provide the Princeton mathematicians
with expertise on the physics side, both in general relativity and in
modern quantum mechanics. Hoffmann came to Princeton and, together
with Veblen, published an article on a projective reformulation of the
Kaluza-Klein unified theory to which they gave the name of “projective
relativity”. Drawing on the geometry of paths but resolutely physical in
content, it was sent to Physical Review and appeared in the 1 September
1930 issue of that journal.

“In this paper we show that the formalism of O. Klein’s version
of the five-dimensional relativity can be interpreted as a four-di-
mensional theory based on projective instead of affine geometry.
The most natural field equations for the empty spacetime case are
a combination into a single invariant set of the gravitational and
electromagnetic field equations of the classical relativity without
modification. This seems to be the simplest possible solution of
the unification problem.

When we drop a restriction on the fundamental projective tensor
which was imposed in order to reduce our theory to that of Klein
a new set of field equations is obtained which includes a wave
equation of the type already studied by various authors. The use
of projective tensors and projective geometry in relativity theory
therefore seems to make it possible to bring wave mechanics into
the relativity scheme.”45

Coauthoring the article with Hoffmann was, for Veblen, a way into
contemporary physics. For the first time since the inception of the
program in 1922 he was publishing an article proposing a specific
physical theory. On his trip through Europe in 1932 he gave lectures
on the new theory; at Göttingen, Vienna and Hamburg he lectured and
propagandized on the subject. The lectures themselves were published
by Veblen – in German – as the second volume of the newly-founded
and prestigious Springer series, Ergebnisse der Mathematik und ihrer
Grenzgebiete.46

45 Veblen & Hoffmann 1930
46 Veblen 1933
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But when Veblen made this trip he was no longer – at least from an
administrative point of view – part of Princeton University. Indeed, the
main purpose of that trip was to find and recruit mathematicians for
the Institute for Advanced Study of which he was the first head of the
Mathematics School.47 In many respects the just-created Institute was a
realization of the earlier plans by Veblen for an American research center
in mathematics and physics. Though initiated by people and institutions
without much knowledge of Veblen’s original ideas, the final selection of
the Princeton mathematician to be scientific head of the new organization
(instead of the original choice, Harvard’s George David Birkhoff) meant
that the program to be instituted bore a very close resemblance to what
Veblen had thought of as the ideal infrastructure for the carrying-out
of the plan to combine mathematics and physics. Of the five original
members of the Mathematics School: James Alexander, Albert Einstein,
Walther Mayer, John von Neumann, and Hermann Weyl, one (Einstein)
was not a mathematician but a physicist and two had published recently
on physics as well as on mathematics (Weyl on relativity and unified
theories and Von Neumann on quantum mechanics).48 Only Alexander
was a pure mathematician, a topologist; he had however passed his entire
career up to that point at Princeton where he had been Veblen’s student49

then colleague. And the fact that the institute remained physically at Fine
Hall until the completion of its own building, Fuld Hall, in 1939, meant
that a constant contact was maintained between the two institutions.
Still with no classes to teach or students to advise, the old dynamic could
no longer be maintained.

47 For a detailed discussion of the early years of the Institute see now Batterson 2006.
48 Einstein and Weyl of course were viewed by the Princeton School, as a number of

citations above witness, as the precursors and founders in a sense of the Princeton
program. Walther Mayer, a mathematician, was Einstein’s collaborator and had been
given his position at the Institute on the demand of the latter with the understanding
that Mayer would continue to collaborate with Einstein on unified theories.

49 As such, of course, he did not escape a temporary participation in the geometry
of paths program and, like Alonzo Church, had published two articles on the
subject: Alexander 1925 – 26 and Alexander 1926 – 27. The question of the extent to
which Alexander saw his topological work of the nineteen-twenties as part of the
path-geometrical program remains an open question.
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3.6 Winding down

With Veblen involved with setting up the Institute for Advanced Study
and Eisenhart, as Dean of the College, very occupied with administrative
duties, the Princeton School no longer had a functioning center. But the
University now had a reputation in the field of mathematics such that
the activities centered around other faculty members such as Solomon
Lefschetz, Eugene Wigner and Alonzo Church would constitute new
centers. Moreover the recruitment of talent on both the national and
international levels no longer posed any problem. The visitors that filed
through Princeton included Paul Alexandroff and Heinz Hopf (1927 – 28);
G. H. Hardy (1928 – 29); John von Neumann (1929 – 30 and later); John H.
Roberts and J. H. van Vleck (1937 – 38); and Claude Chevalley (1939 – 40).
But their agendas were no longer those of the Princeton School and the
latter’s part in the story of the rise of Princeton University as a center for
research in differential geometry and in theoretical physics was largely
forgotten.

But not quite completely. There had been three major centers of
research in the differential geometry of generalized spaces and their
connection with general relativity and unified theories during the first
decade and a half following the Great War: Princeton, Paris with Élie
Cartan and Delft, Holland with Jan Schouten and his school.50 Often in
conflict during the earlier period, the nineteen-thirties saw a convergence.
Schouten and David van Dantzig had developed a projective unified
theory quite similar to Veblen and Hoffmann’s at the same time51 using
a very different approach, directly generalizing the connection. They
explicitly pushed the similarities between their results and those of both
the Princeton School and Cartan’s work on projective spaces. Although
Cartan himself never attempted a direct foray into physics, Shing-Shen
Chern, back in Beijing, China after his studies with Wilhelm Blaschke
in Hamburg and Cartan in Paris, produced his first major paper: “On
Projective Normal Coordinates” in 1937, which he published in the
Princeton-based Annals of Mathematics, and in which he showed the
conditions for reconciling the Cartan and Princeton School definitions

50 Details of these three centers will be discussed in Ritter 2011.
51 See the review article they produced for the physics community, Schouten & van

Dantzig 1932, and the literature cited therein.
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of projective normal coordinates.52 And in Princeton itself, Veblen’s last
student, John L. Vanderslice, who had followed him to the Institute in
1932, published a thesis in which he showed how the “non-holonomic”
(generalized) spaces of Cartan could be viewed from the standpoint
of the geometry of paths – using moreover a postulationist axiomatic
approach. But this is not an abandonment of the Princeton School’s
program, as he points out in the introduction to his thesis:

“We do not take the position that the non-holonomic geometries
defined by our postulates represent the only significant general-
ized geometries, nor do we wish to minimize the importance of
other points of view toward these same geometries. Our treatment
is not in conflict with the conception of a geometry as the theory
of a geometric object;53 the analytical development soon gives rise
to a “geometric object”. . . upon which the subsequent discussion
is based. Rather does our theory furnish one method among many
of discovering geometrical objects which are of significance.”54

Moreover Eisenhart continued to publish his very influential books
on differential geometry; significantly his next, after the programatic
Non-Riemannian Geometry of 1927, was called Continuous Groups of
Transformations which appeared in 1933, with generous references to
Cartan and Schouten as well as to the Princeton School.55

The nineteen-thirties thus saw a series of attempts from all sides to
show the equivalence of the three major approaches to the question of
the generalization of traditional differential geometry. The final result
was a certain consensus which, generalized again in a complicated
development, starting in the late nineteen-thirties but extending well
into the nineteen-fifties, led to a modern synthesis, essentially under the
name of Cartan. Without denying the central role played by the French
mathematician, the result historically is in part a cause and in part an
effect of the post-World War II split between mathematics and physics
in this domain, together with the marginalization of general relativity,

52 Chern 1938. Furthermore Chern always referred to modern differential geometry as
a joint production of the Princeton School and of Cartan. See, for example, Chern
1979.

53 The reference here is to Veblen 1929b, see the quotation above, section 3.4.
54 Vanderslice 1934, 154
55 Eisenhart 1927; Eisenhart 1933.
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both classical and in the extended sense of unified field theories. The
unity between mathematics and physics worked for by the Princeton
School and to a large extent also by the group around Schouten was lost,
ironically perhaps, in large part due to the work of Princeton geometers
of the post-Veblen period.

Thus ended one of the first attempts to create a modern research
organization in American mathematics and physics. The kind of unity
across mathematics and physics that Veblen foresaw was one that
demanded not a simple application of mathematics to already existing
physics or even a modification of mathematics through its contact
with contemporary physical problems, but one that would remodel
both mathematics and physics by showing their essential unity and
drawing on the lessons of the past – Euclidean geometry and Newtonian
physics – to inspire new geometries and new physics. Not that this
demanded a uniform means of putting this into practice: we have seen
the difference among the approaches of Eisenhart, the traditionalist,
offering rigor and completeness as a mathematician to existing theories;
J. M. Thomas proposing to go further and modify existing theories
on the basis of mathematical demands; and Veblen and Hoffmann,
engaging fully in terms of their own physical theories. Moreover the
idea of having mathematicians and physicists working together through
joint professorships for mature researchers and doctoral mentoring
for younger ones, and joint seminars and publications, remind us to
what extent the mathematics-physics frontier is not about the interface
between some hypostatized intellectual domains but rather one of real
mathematicians and physicists meeting to solve real problems.

That they did not in the end solve these problems is hardly surprising;
they are with us still today. Nor is the model they created necessarily
the best-suited to achieve that aim. But the experiment that started in
post-War Princeton was in many respects a forerunner of our modernity,
both in terms of infrastructure and of intellectual approach. The fact that
mathematics and physics are now in one of their episodic rapprochements
renders it profitable to look back at the last time the two fields nearly
met, in a truly usable past.
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